Optimal Rate List Decoding via Derivative Codes
نویسندگان
چکیده
The classical family of [n, k]q Reed-Solomon codes over a field Fq consist of the evaluations of polynomials f ∈ Fq[X ] of degree< k at n distinct field elements. In this work, we consider a closely related family of codes, called (orderm) derivative codes and defined over fields of large characteristic, which consist of the evaluations of f as well as its first m− 1 formal derivatives at n distinct field elements. For large enough m, we show that these codes can be list-decoded in polynomial time from an error fraction approaching 1− R, where R = k/(nm) is the rate of the code. This gives an alternate construction to folded Reed-Solomon codes for achieving the optimal trade-off between rate and list error-correction radius. Our decoding algorithm is linear-algebraic, and involves solving a linear system to interpolate a multivariate polynomial, and then solving another structured linear system to retrieve the list of candidate polynomials f . The algorithm for derivative codes offers some advantages compared to a similar one for folded Reed-Solomon codes in terms of efficient unique decoding in the presence of side information.
منابع مشابه
Cyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate
Algebraic error-correcting codes that achieve the optimal trade-off between rate and fraction of errors corrected (in the model of list decoding) were recently constructed by a careful “folding” of the Reed-Solomon code. The “low-degree” nature of this folding operation was crucial to the list decoding algorithm. We show how such folding schemes useful for list decoding arise out of the Artin-F...
متن کاملExplicit rank-metric codes list-decodable with optimal redundancy
We construct an explicit family of linear rank-metric codes over any field Fh that enables efficient list decoding up to a fraction ρ of errors in the rank metric with a rate of 1− ρ− ε, for any desired ρ ∈ (0, 1) and ε > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding bey...
متن کاملAverage-radius list-recovery of random linear codes: it really ties the room together
We analyze the list-decodability, and related notions, of random linear codes. This has been studied extensively before: there are many different parameter regimes and many different variants. Previous works have used complementary styles of arguments—which each work in their own parameter regimes but not in others—and moreover have left some gaps in our understanding of the list-decodability o...
متن کاملLinear-Algebraic List Decoding for Variants of Reed-Solomon Codes
Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal tradeoff between rate and list error-correction capability: specifically, for any ε > 0, Guruswami and Rudra presented an n time algorithm to list decode appropriate folded RS codes of rateR from a fraction 1−R− ε of errors. The algorithm is based on multivariate polynomial interpolation and root-finding over ext...
متن کاملLinear-Time List Recovery of High-Rate Expander Codes
We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011